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Abstract
The rich occurrence of helium and hydrogen in space makes their properties
highly interesting. By means of molecular dynamics (MD), we have examined
two interatomic potentials for 4He. Both potentials are demonstrated to
reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS,
solid–solid transitions and melting at high pressures (P) were studied using a
two-phase method. The Buckingham potential shows a good agreement with
theoretical and experimental EOS, but does not reproduce experimental melting
data. The Aziz potential shows a perfect match with theoretical melting data.
We conclude that there is a stable body-centred-cubic (bcc) phase for 4He at
temperatures (T ) above 340 K and pressures above 22 GPa for the Buckingham
potential, whereas no bcc phase is found for the Aziz potential in the applied
PT range.

1. Introduction

The properties of hydrogen and helium at high density are of great interest as these elements
constitute 95% of the matter in the solar system [1]. Planets such as Jupiter and Saturn are
believed to consist mainly of these two substances [2]. In order to build models for these
planets, accurate equation of state data are required. For decades, the crystal structure, phase
diagram and equation of state of helium have been investigated with experimental [3–5] and
theoretical methods [6–8]. The diamond-anvil cell (DAC) measurements for the 4He EOS
shows a face-centred-cubic (fcc) to body-centred-cubic (bcc) phase transition prior to melting
with a triple point (fcc–bcc–fluid) near T = 300 K and P = 16 GPa [5, 6]. This triple point
was confirmed by Levesque et al [9]. The occurrence of a bcc phase could be explained by its
higher entropy in comparison with the fcc phase, compensating the higher internal energy of
the bcc structure [10]. Therefore, the Helmholtz free energy can be lower for the bcc phase.
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However, the bcc phase was questioned by Loubeyre et al [11], who found the triple point to be
fcc–hcp (hexagonal-close-packed)–fluid at about the same conditions. In this paper, we have
used two interatomic potentials to perform molecular dynamics (MD) simulations for a wide
range of temperatures and pressures to study phase transitions and melting points. The melting
temperature Tm for a pressure P is defined by the condition where the Gibbs free energy of the
solid and liquid are equal [12], i.e.

Gsolid(P, Tm) = G liquid(P, Tm). (1)

This form is known as the two-phase method [13], reported to accurately determine the melting
temperatures at a specific pressure [14]. We have also performed first-principles (ab initio)
MD calculations based on density functional theory (DFT) in order to check the classical MD
calculations based on empirical potentials. These techniques are described in the following
section. Then, the results are presented, followed by a discussion and conclusions.

2. Methods

2.1. The models

First-principles (ab initio) methods are constantly developing [15–17], and benefit from the
inclusion of electronic interaction, compared to classical methods. However, first-principles
MD are computationally demanding, requiring long simulation times. Empirical potentials
have functional forms which can be tuned to mimic to the maximum possible degree the
energies and forces predicted by electronic structure techniques. By this semiempirical
approach, the number of atoms included in the simulations can be significantly increased.
However, as the parameters are tuned to experimental data, the method suffers if data are
scarce. By fitting first-principles results to a classical model, one can combine the advantageous
aspects of the first-principles as well as the semiempirical methods. Then, a classical MD
simulation can be performed to operate on a big system. Several attempts have been made
to test simple semiempirical pair potentials to match experimental He data [18, 19]. In this
work, two interatomic potentials and parameter settings for 4He were considered, namely the
exponential-six (exp-6) potential from Ross and Young [1] and the Aziz [20] potential. The
exp-6 potential is defined as

�(r) = ε

{
6

α − 6
exp

[
α

(
1 − r

rm

)]
− α

α − 6

(rm

r

)6
}

, (2)

where r is the interatomic distance and α, ε and rm are adjustable parameters. The potential
was for convenience converted to an equivalent Buckingham form,

V (r) = − A

r 6
+ Be−Cr , (3)

with A, B and C as adjustable parameters. The parameters were fitted to equation of state
data of high-pressure solid and liquid helium [2], using full-potential linear muffin-tin orbital
electron band theory calculations. For the liquid, a variational hard-sphere perturbation theory
was used to calculate the free energies, referring to the repulsive potential �0(r) = ε(σ/r)12.
For the calculation of the solid free energies, quasi-harmonic lattice dynamics with anharmonic
corrections were used. The model is expected to be valid at high pressures, but not for
very low pressures, where quantum effects dominate the solid state properties. However, the
melting curve of He at room temperature is only modestly influenced by quantum effects [9].
Furthermore, for rare gases, no electrons are available for bonding and atoms are attracted to
each other through van der Waals forces. The parameters for the exp-6 potential together with
the converted Buckingham parameters are presented in table 1.
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Figure 1. The Buckingham [1] and Aziz [20] potentials as a function of interatomic distance. Their
discrepancy lies mainly in the part of small interatomic distances, where the stiffer Aziz potential
has a higher repulsion than the softer Buckingham potential, shown in the inset.

Table 1. Exponential-6 potential parameters [2] and converted Buckingham potential parameters.

α ε/k (K) rm (Å) A B C

13.1 10.8 2.9673 113.09 37101 4.4148

Table 2. Aziz potential parameters [20].

A α C6 C8 C10 D ε/k (K) rm (Å)

0.5449e6 13.353 1.373 0.425 0.178 1.241 10.8 2.9673

The Aziz potential is based on a combination of ab initio calculations of the self-consistent-
field Hartree–Fock repulsion between closed shell systems, an empirical estimate of the
correlation energy and semiempirically determined dispersion coefficients C6, C8 and C10. It
has the form

V ∗(x) = Ae−αx −
(

C6

x6
+ C8

x8
+ C10

x10

)
F(x), (4)

where

F(x) =
{

e(− D
x −1)2

for x < D

1 for x � D

and x = r/rm. The parameters in equation (4) are presented in table 2. The discrepancy
between the two interatomic potentials is shown in figure 1. The repulsive wall for interatomic
distances smaller than rm is stiffer for the Aziz potential in comparison to the Buckingham
potential, clearly shown in the inset.

2.2. Technical details

The Moldy package [21] was used for the simulations, performed in the N PT ensemble
(constant number of particles together with constant pressure and temperature). Periodic
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boundary conditions were applied, meaning that if a particle leaves the simulation box, an
identical particle enters on the other side. The simulation results with the chosen model of
atomic interaction depend on several parameters such as the initial atomic configuration, the
number of the time step n, the number of atoms N and the cutoff rcutoff. By varying these
parameters, we found that reliable results could be obtained with n = 20 000 time steps,
N > 1500 and rcutoff = 6 Å. The cutoff roughly corresponds to the inclusion of the seventh-
nearest neighbour. Furthermore, a strict cutoff was applied, meaning that all interactions
between pairs of sites within the cutoff were included.

The density functional theory (DFT) calculations in this work were performed using the
Vienna ab initio simulation package (VASP) [22, 23]. The generalized-gradient approximation
(GGA) [24] was used as the exchange–correlation function.

3. Results

The radial distribution function gn(r) depends on temperature and density. Therefore, it serves
as a helpful indicator of the phase assumed by the system in the MD calculations. In this work,
the function was used to determine the different structures (bcc, fcc or liquid) as a function of
temperature and pressure. The gn(r) function is defined in the following way: over an interval
of n time steps of integration of the equations of motion, the mean volume Vn and the mean
number of atoms Nn , at a distance between r and r + dr from an atom, are calculated. Then,
gn(r) is given by

gn(r) = Nn(r)Vn

4πr 2 dr N
. (5)

To visualize the bcc/fcc discrepancy by means of the gn(r), a perfect bcc lattice consisting
of 1024 atoms was created by multiplying the bcc unit cell containing two atoms eight times
(2 × 8 × 8 × 8) in each of the three orthogonal directions. To resemble the density of the
substance at the simulation conditions, the density was set to ρ = 6.44 Å

3
/atom. One lattice

was simulated with constant pressure and constant temperature (N PT ) at 16 GPa and 200 K,
whereas a second and a third identical lattice were simulated at higher temperatures of 300
and 425 K, respectively. The radial distribution function gn(r) was evaluated for the three
simulations after 20 000 time steps and is shown in figure 2.

The number of neighbours for the first six shells are 12, 6, 24, 12, 24 and 8 for the fcc
phase and 8, 6, 12, 24, 8 and 6 for the bcc phase. In figure 2, the arrows from below indicate
the peak positions in a perfect bcc lattice, whereas the arrows from above indicate perfect fcc
peaks. The first peak for the 200 K simulation is clearly higher and more narrow than that of
the simulation performed at 300 K. The number of nearest neighbours in combination with the
positions of the arrows indicate an fcc structure in the 200 K simulation and a bcc structure at
300 K. Furthermore, the gn(r) for the 300 K simulation shows a minimum at 4.6 Å, which can
be related to few atoms in the fifth and sixth shells for the bcc phase. The fcc lattice has peaks
at the third and fourth shells, manifesting in peaks for the 200 K simulation at 3.6 Å and 4.25 Å.
A molten configuration is identified by a damped, oscillating behaviour of gn(r), clearly shown
by the 425 K simulation (2).

To initiate the setup for the two-phase simulations, two perfect fcc lattices containing 864
atoms each were constructed, as the four-atom fcc unit cell was multiplied six times in the three
orthogonal directions (4×6×6×6). The lattice parameter a = 3.03 Å was chosen to represent
the approximate lattice parameter at the pressure and temperature range (P = 8–40 GPa,
T = 100–500 K) simulations. One of the lattices was simulated at P = 17 GPa and T = 450 K
to transform into a molten configuration. The solid and molten structures were put together with
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Figure 2. The radial distribution function for three N PT simulations with the Buckingham
potential [1] at 16 GPa, 200 K; 16 GPa, 300 K and 16 GPa, 425 K. The arrows from below indicate
the peak positions in a perfect bcc lattice, whereas the arrows from above indicate perfect fcc peaks.
The correspondence between the arrows and the peaks from the simulations clearly separates the
structures: the low-temperature simulation (200 K) results in an fcc configuration, whereas a higher
temperature (300 K) implies a solid–solid phase transformation to the bcc structure before melting
(425 K).

a small spacing in a simulation box, letting the lower part of the box be molten and the upper
part be solid, as shown in figure 3. Starting from this configuration, the MD simulations result
in a monophase. If the temperature is below Tm, the phase will crystalline whereas the phase
will be liquid if the temperature is above Tm. By narrowing the interval, the melting temperature
can be estimated at the specific pressure in the simulation. Belonoshko [13] explained the two-
phase simulation method in detail, and its successful application for a number of systems has
been reported [17, 25].

The equation of state (EOS) data shown in figure 4 show the pressure as a function of
volume for the two-phase setup at 300 K with the Buckingham potential. There is a good match
with the EOS results from Ross and Young [1], using the same potential. The discrepancy
between Aziz and Buckingham results in the EOS is due to the stiffer Aziz potential.

The low-pressure behaviour of He is shown in figure 5. The Buckingham potential
underestimates the volume at a given pressure and temperature with at most 5% compared
to Young et al [2]. Comparing the Aziz and Buckingham melting curves with the data of Ross
and Young [1], Loubeyre and Hansen [10] and Mao et al [26], the Aziz potential shows a
better agreement to the referred data, shown in figure 6. At the same pressure, the Buckingham
potential melts at a lower temperature than the Aziz potential due to its softer potential shape.

By means of N PT calculations for the two-phase system described for several pressures
and temperatures, the melting and phase diagram with the Buckingham potential is shown
in figure 7. To establish the configuration (crystal structure or liquid) from the simulation
results, the gn(r) function was used as previously described. For low pressures, an increase in
temperature implies a transition from the fcc crystal to a liquid structure. For higher pressures,
the fcc phase transforms into the bcc structure before reaching the liquid phase at higher
temperatures. Although starting from a setup with the fcc and liquid configurations, the bcc
structure is more favourable than any of these at certain temperature and pressure conditions,
implying that its Gibbs free energy is indeed lower. For the Aziz potential, no bcc phase is
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x
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Figure 3. Two-phase setup where 864 atoms in an fcc structure are placed on top of 864 atoms
in a molten structure (for enhanced readability, the figure has been plotted in two dimensions with
the x and z axes). Starting from this configuration, the MD simulations result in a monophase. If
T < Tm, the phase will be crystalline whereas the phase will be liquid if T > Tm. By narrowing
the interval, the melting temperature can be estimated at the specific pressure in the simulation.

found for the pressure and temperature range shown in figure 7, nor for higher pressures and
temperatures, following the melting curve up to 25 GPa.

4. Discussion

The Buckingham [1] and Aziz [20] models studied in this work are two-body models, in
practice limited to rare gases. However, as the Buckingham potential parameters are developed
from experimental data, many-body effects are incorporated implicitly in the model. The match
with the ab initio data in figure 4 is almost perfect at higher pressures. At lower pressures, the
ab initio calculations overestimate the pressure compared to the potential and experiments.
This could be due to the limitation of DFT to accurately describe the van der Waals forces [27].
The omitting of three-body terms is discussed by Levesque et al [9], reporting the effects of
the terms to be small for the rare gases in general, and for He in particular. The three-body
forces are most likely to be very close in magnitude in a liquid and a solid. Therefore, the
forces should not have a major impact on the equality of the Gibbs energies, determining the
melting. The difference in the results of the two models originates from the stiffness of the Aziz
potential shown in figure 1. This implies a lower compressibility (figure 4) and higher melting
temperatures (figure 6). As Belonoshko [14] has reported the ability to accurately determine
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Figure 4. Pressure–volume equation of state for the Buckingham potential (this work) and the
VASP calculations (this work). The experimental equation of state data at 300 K [11, 26] are shown
as triangles and circles, respectively. The lines correspond to theoretical calculations, also from
Mao et al [26] based on the pair potentials by Ross and Young [1], Ceperley and Partridge [8], and
Aziz et al [20].
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Figure 5. Pressure–volume equation of state for liquid He with the Buckingham potential [1] at
75, 150, 225, and 300 K. The symbols correspond to theoretical calculations with the exponential-6
potential [2], whereas the lines correspond to this work. The experimental data [3], serving as the
reference for the Young et al parameter fitting, almost coincide with the exponential-6 data and are
therefore omitted in the plot.

melting temperatures at specific pressures by the two-phase method, this study emphasizes that
the Aziz model more correctly reproduces the melting curve compared to the Ross and Young
model. The existence of an fcc–bcc transition in 4He at the conditions studied is therefore
not very likely, considering the results obtained with the Aziz potential. However, it is still
possible that the Ross and Young model is doing better for solids, which could result in an
fcc–bcc transition.
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Pressure (GPa)

T
em

pe
ra

tu
re

 (
K

)

Aziz (this work)
Buckingham (this work)
Aziz (Loubeyre and Hansen)
Buckingham (Ross and Young)
Exp. (Mao et al.)

0

100

200

300

400

500

0 5 10 15 20 25

Figure 6. The two-phase melting with the Buckingham [1] and Aziz [20] potentials (this work),
and the melting curves from Ross and Young [1], Loubeyre and Hansen [10] and Mao et al [26].
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Figure 7. Phase boundaries as a result of two-phase simulations with the Buckingham potential [1].
In the initial configuration, 864 atoms in an fcc phase were placed on top of 864 atoms in a molten
structure, as shown in figure 3. For lower pressures, the melting implies a transition from the fcc
crystal to a liquid structure. For higher pressures, the fcc phase transforms into the bcc phase before
reaching the liquid phase at higher temperatures. The bcc structure was sporadically observed at
a pressure as low as 12 GPa. However, as the gap between the fcc structure and the liquid in the
pressure and temperature range is small, the determination of the structure is difficult. By increasing
the temperature and pressure, observations from 22 GPa and 340 K more consistently revealed the
bcc phase.

5. Conclusions

We have compared the Buckingham potential [1] and the Aziz potential [20] for 4He with
MD simulations using a two-phase method. We have found that the Buckingham potential
reproduces experimental and theoretical EOS data well. Furthermore, starting from the fcc
and liquid two-phase configurations, there is a clear solid–solid transformation into the bcc
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structure. Although the bcc structure is observed already at 12 GPa, the gap between the liquid
and the fcc structure is small, making reliable structure determinations difficult. However,
above 22 GPa and 340 K, the bcc structure was clearly observed. Due to the softness of the
Buckingham potential compared to the Aziz potential, the melting occurs at lower temperatures
compared to experiment. The Aziz potential overestimates the pressure at low densities from
the EOS, but shows excellent agreement with theoretical melting data. Furthermore, the
potential does not show a bcc structure between the fcc structure and the liquid configuration.
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